organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,5-Bis[1-acetyl-5-(4-chlorophenyl)-4,5dihydro-1H-pyrazol-3-yl]-2,6-dimethylpyridine

Qun Qian,^a Jun Zhang,^a Min Zhang,^a* Xiang He^a and Yi-Ben Xia^b

^aDepartment of Chemistry, College of Science, Shanghai University, Shanghai 200444, People's Republic of China, and ^bSchool of Materials Science and Engineering, Shanghai University, Shanghai 200072, People's Republic of China Correspondence e-mail: minzhang1@yeah.net

Received 25 July 2008; accepted 28 July 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.037; wR factor = 0.078; data-to-parameter ratio = 10.9.

The title compound, C₂₉H₂₇Cl₂N₅O₂, contains a central pyridine ring and two functionalized pyrazoline rings. The pyridine ring and the two attached pyrazoline rings are nearly coplanar, whereas the terminal chlorophenyl rings are nearly perpendicular to the attached pyrazoline rings [dihedral angles = 86.78(1) and $77.70(1)^{\circ}$]. Molecules are linked by weak intermolecular $C-H \cdots O$ hydrogen bonding.

Related literature

For general background, see: Ahn et al. (2004); Palaska et al. (1996); Yar et al. (2006)

Experimental

Crystal data

C ₂₉ H ₂₇ Cl ₂ N ₅ O ₂	b = 9.6763 (19) Å
$M_r = 548.46$	c = 13.268 (3) Å
Monoclinic, P2 ₁	$\beta = 115.00 \ (3)^{\circ}$
a = 12.345 (3) Å	$V = 1436.4 (5) \text{ Å}^3$

Z = 2Mo $K\alpha$ radiation $\mu = 0.26 \text{ mm}^{-1}$

Data collection

Bruker SMART CCD area-detector	7509 measured reflections
diffractometer	3736 independent reflections
Absorption correction: multi-scan	2520 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.027$
$T_{\min} = 0.926, \ T_{\max} = 0.950$	
Refinement	

 $R[F^2 > 2\sigma(F^2)] = 0.036$ H-atom parameters constrained $wR(F^2) = 0.077$ $\Delta \rho_{\rm max} = 0.14 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$ S = 0.91Absolute structure: Flack (1983), 3736 reflections 344 parameters 1031 Friedel pairs Flack parameter: 0.06 (6) 1 restraint

T = 296 (2) K

 $0.30 \times 0.20 \times 0.20$ mm

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C9-H9A\cdotsO2^{i}$ $C17-H17A\cdotsO2^{ii}$	0.99 0.95	2.59 2.50	3.358 (3) 3.359 (4)	135 151
Symmetry codes: (i) $-r + 1$ $y + \frac{1}{2} - 7$; (ii) $r y + 7 + 1$				

metry codes: (i) -x + 1, $y + \frac{1}{2}$, -z; (ii) x, y, z + 1.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the Instrument Analysis and Research Center of Shanghai University for the data collection. The project was supported by the Key Subject of Shanghai Municipal Education Commission (grant No. J50102) and the Foundation of the Education Commission of Shanghai Municipality, China (grant No. 08zz44).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2444).

References

- Ahn, J. H., Kim, H. M., Jung, S. H., Kang, S. K., Kim, K. R., Rhee, S. D., Yang, S. D., Cheon, H. G. & Kim, S. S. (2004). Bioorg. Med. Chem. Lett. 14, 4461-4465
- Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Palaska, E., Erol, D. & Demirdamar, R. (1996). Eur. J. Med. Chem. 31, 43-47.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yar, M. S., Siddiqui, A. A. & Ali, M. A. (2006). Bioorg. Med. Chem. Lett. 16, 4571-4574.

Acta Cryst. (2008). E64, o1700 [doi:10.1107/S1600536808023921]

3,5-Bis[1-acetyl-5-(4-chlorophenyl)-4,5-dihydro-1H-pyrazol-3-yl]-2,6-dimethylpyridine

Q. Qian, J. Zhang, M. Zhang, X. He and Y.-B. Xia

Comment

The pyrazoline derivatives are well known nitrogen-containing heterocyclic compounds which show various biological activities and pharmacological properties (Palaska *et al.*, 1996). Some of them can be anti-bacterial and anti-fungal, others are anti-diabetic, anti-inflammatory and also active against many Mycobacterias (Ahn *et al.*, 2004; Yar *et al.*, 2006). As the stereochemistry may be an important modulator of biological activity, the crystal structure of the title compound has been determined.

The molecular structure is shown in Fig. 1. There are two chlorophenyl rings bonded with two pyrazoline rings in *cis*arrangement, and these two pyrazoline rings are further bonded with the same pyridine ring. The central pyridine ring and two attached pyrazoline rings are nearly coplanar with the dihedral angles of 1.32 (2) and 4.88 (2)°, whereas the dihedral angles between each chlorophenyl plane and the attached pyrazoline planes are 86.78 (1) and 77.70 (1)°.

In the crystal structure, there are weak intermolecular C-H···O hydrogen bonding (Table 1 and Fig. 2).

Experimental

2,6-Dimethyl-3,5-di-[3-(4-chloro-phenyl)-acryloyl-pyridine (1 mmol, 0.436 g) and 85% hydrazine hydrate solution (4 mmol, 0.235 g) were dissolved in 5 ml of acetic acid solution. The solution was refluxed for 8 h, and allowed to cool to room temperature. The reaction mixture was poured into crushed ice, then neutralized with dilute sodium hydroxide solution. The solid separated was filtered off, washed with water, dried and recrystallized from ethyl acetate to give a colorless compound in a yield of of 40%. Single crystals suitable for X-ray analysis were obtained form tetrahydrofuran at room temperature.

Refinement

All H atoms were placed in calculated positions, with C—H = 0.93–0.99 Å, and included in the final cycles of refinement using a riding model, $U_{iso}(H) = 1.5U_{eq}(C)$ (for methyl groups) or $1.2U_{eq}(C)$ (for others). There is a void of 56 Å³ in the crystal structure, but no solvent molecule could be located reasonably.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. Crystal packing diagram of compound (I), Hydrogen bonding is indicated by dashed lines.

3,5-Bis[1-acetyl-5-(4-chlorophenyl)-4,5-dihydro-1H-pyrazol-3-yl]- 2,6-dimethylpyridine

Crystal data	
C ₂₉ H ₂₇ Cl ₂ N ₅ O ₂	$F_{000} = 572$
$M_r = 548.46$	$D_{\rm x} = 1.268 {\rm Mg m}^{-3}$
Monoclinic, P2 ₁	Melting point = 547–549 K
Hall symbol: P 2yb	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 12.345 (3) Å	Cell parameters from 2029 reflections
b = 9.6763 (19) Å	$\theta = 2.7 - 20.6^{\circ}$
c = 13.268 (3) Å	$\mu = 0.26 \text{ mm}^{-1}$
$\beta = 115.00 \ (3)^{\circ}$	T = 296 (2) K
$V = 1436.4 (5) \text{ Å}^3$	Block, colorless
<i>Z</i> = 2	$0.30 \times 0.20 \times 0.20 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	3736 independent reflections
Radiation source: fine-focus sealed tube	2520 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.027$
T = 173(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ω scans	$\theta_{\min} = 2.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -14 \rightarrow 14$
$T_{\min} = 0.926, \ T_{\max} = 0.950$	$k = -5 \rightarrow 11$
7509 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.036$	$w = 1/[\sigma^2(F_o^2) + (0.0287P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.077$	$(\Delta/\sigma)_{max} < 0.001$
S = 0.91	$\Delta \rho_{max} = 0.14 \text{ e } \text{\AA}^{-3}$
3736 reflections	$\Delta \rho_{min} = -0.15 \text{ e } \text{\AA}^{-3}$
344 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983), 1031 Friedel pairs

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C11	0.82566 (10)	0.19017 (14)	0.84787 (9)	0.1067 (4)
Cl2	0.93108 (9)	-0.23669 (14)	0.26803 (10)	0.1163 (4)
N4	0.3040 (2)	0.0470 (3)	-0.03488 (19)	0.0535 (7)
O2	0.4646 (2)	0.0216 (3)	-0.19685 (16)	0.0699 (7)
N2	0.2426 (2)	0.4329 (3)	0.4064 (2)	0.0591 (7)
C3	0.3001 (3)	0.2513 (3)	0.1935 (2)	0.0518 (8)
H3A	0.3772	0.2901	0.2141	0.062*
C2	0.2559 (3)	0.1586 (3)	0.1053 (2)	0.0472 (8)
N5	0.3995 (2)	0.0474 (3)	-0.06575 (19)	0.0520 (7)
N1	0.0772 (2)	0.1372 (3)	0.1322 (2)	0.0595 (7)
C8	0.2922 (3)	0.3870 (3)	0.3447 (2)	0.0511 (8)
N3	0.3251 (2)	0.5240 (3)	0.4848 (2)	0.0588 (7)
C21	0.5046 (3)	0.1276 (3)	0.0106 (2)	0.0498 (8)
H21A	0.5260	0.1990	-0.0324	0.060*
C1	0.1420 (3)	0.1018 (3)	0.0771 (2)	0.0533 (8)
C4	0.2348 (3)	0.2885 (3)	0.2519 (2)	0.0501 (8)
C19	0.3333 (3)	0.1291 (3)	0.0493 (2)	0.0474 (8)
C20	0.4534 (2)	0.1978 (3)	0.0844 (2)	0.0503 (8)
H20A	0.5048	0.1814	0.1641	0.060*
H20B	0.4447	0.2986	0.0705	0.060*
C13	0.5391 (3)	0.4494 (3)	0.5838 (3)	0.0547 (8)
C24	0.6109 (2)	0.0369 (3)	0.0729 (2)	0.0475 (8)
01	0.3715 (2)	0.6813 (3)	0.6201 (2)	0.0844 (8)
C7	0.0821 (3)	-0.0002 (4)	-0.0160 (3)	0.0701 (10)
H7A	0.0072	-0.0321	-0.0150	0.105*
H7B	0.1351	-0.0793	-0.0061	0.105*
H7C	0.0650	0.0446	-0.0874	0.105*
C29	0.6086 (3)	-0.0608 (4)	0.1481 (3)	0.0580 (9)
H29A	0.5379	-0.0706	0.1593	0.070*
C11	0.2948 (4)	0.6055 (4)	0.5529 (3)	0.0677 (10)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C9	0.4157 (3)	0.4450 (3)	0.3751 (2)	0.0564 (9)
H9A	0.4160	0.5088	0.3169	0.068*
H9B	0.4743	0.3702	0.3860	0.068*
C18	0.5107 (3)	0.3598 (4)	0.6500 (3)	0.0598 (9)
H18A	0.4298	0.3507	0.6388	0.072*
C10	0.4435 (3)	0.5226 (4)	0.4848 (2)	0.0578 (9)
H10A	0.4694	0.6193	0.4797	0.069*
C25	0.7154 (3)	0.0477 (4)	0.0600 (3)	0.0642 (10)
H25A	0.7208	0.1143	0.0097	0.077*
C17	0.5992 (3)	0.2823 (4)	0.7333 (3)	0.0667 (9)
H17A	0.5787	0.2220	0.7790	0.080*
C22	0.3836 (3)	0.0014 (3)	-0.1681 (3)	0.0563 (9)
C28	0.7057 (3)	-0.1451 (4)	0.2079 (3)	0.0667 (10)
H28A	0.7016	-0.2112	0.2591	0.080*
C14	0.6579 (3)	0.4611 (4)	0.6040 (3)	0.0742 (11)
H14A	0.6801	0.5241	0.5611	0.089*
C27	0.8074 (3)	-0.1310 (4)	0.1916 (3)	0.0684 (10)
C6	0.0396 (3)	0.2566 (5)	0.2730 (3)	0.0917 (14)
H6A	-0.0334	0.2013	0.2372	0.138*
H6B	0.0187	0.3549	0.2660	0.138*
H6C	0.0800	0.2318	0.3519	0.138*
C5	0.1217 (3)	0.2283 (3)	0.2175 (3)	0.0572 (9)
C16	0.7161 (3)	0.2940 (4)	0.7486 (3)	0.0690 (10)
C26	0.8133 (3)	-0.0363 (5)	0.1185 (3)	0.0753 (11)
H26A	0.8842	-0.0276	0.1074	0.090*
C15	0.7466 (3)	0.3822 (5)	0.6863 (3)	0.0814 (12)
H15A	0.8277	0.3908	0.6980	0.098*
C12	0.1685 (3)	0.5944 (5)	0.5398 (3)	0.0878 (12)
H12A	0.1567	0.6570	0.5924	0.132*
H12B	0.1525	0.4992	0.5548	0.132*
H12C	0.1136	0.6197	0.4637	0.132*
C23	0.2705 (3)	-0.0739 (4)	-0.2390 (3)	0.0778 (11)
H23A	0.2731	-0.1018	-0.3089	0.117*
H23B	0.2019	-0.0129	-0.2548	0.117*
H23C	0.2629	-0.1561	-0.1994	0.117*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0941 (8)	0.1130 (9)	0.1006 (8)	0.0245 (7)	0.0290 (6)	0.0137 (7)
Cl2	0.0693 (7)	0.1272 (11)	0.1354 (10)	0.0249 (7)	0.0267 (6)	0.0115 (8)
N4	0.0520 (16)	0.065 (2)	0.0518 (16)	-0.0009 (14)	0.0295 (13)	-0.0093 (15)
O2	0.0865 (17)	0.0762 (18)	0.0682 (15)	-0.0036 (13)	0.0531 (14)	-0.0109 (13)
N2	0.0685 (18)	0.064 (2)	0.0524 (16)	0.0096 (16)	0.0333 (15)	-0.0045 (15)
C3	0.0518 (18)	0.058 (2)	0.0517 (18)	-0.0006 (17)	0.0278 (16)	-0.0058 (17)
C2	0.0498 (18)	0.051 (2)	0.0464 (18)	0.0020 (15)	0.0262 (16)	-0.0037 (16)
N5	0.0536 (16)	0.0614 (19)	0.0479 (15)	-0.0026 (14)	0.0282 (13)	-0.0081 (14)
N1	0.0504 (16)	0.070 (2)	0.0659 (18)	-0.0028 (14)	0.0323 (15)	-0.0081 (16)

C8	0.063 (2)	0.051 (2)	0.0437 (18)	0.0075 (17)	0.0274 (17)	-0.0005 (16)
N3	0.0655 (18)	0.062 (2)	0.0556 (16)	0.0036 (15)	0.0319 (15)	-0.0152 (15)
C21	0.0572 (19)	0.050 (2)	0.0508 (18)	-0.0131 (17)	0.0315 (16)	-0.0076 (17)
C1	0.0519 (19)	0.059 (2)	0.0488 (19)	-0.0016 (17)	0.0213 (16)	-0.0033 (17)
C4	0.060 (2)	0.050 (2)	0.0499 (19)	0.0034 (17)	0.0320 (16)	0.0011 (17)
C19	0.0526 (19)	0.047 (2)	0.0435 (18)	0.0018 (16)	0.0214 (15)	-0.0054 (16)
C20	0.0570 (19)	0.051 (2)	0.0503 (18)	-0.0052 (16)	0.0297 (16)	-0.0076 (17)
C13	0.067 (2)	0.051 (2)	0.054 (2)	-0.0064 (18)	0.0341 (18)	-0.0127 (17)
C24	0.0502 (19)	0.049 (2)	0.0514 (19)	-0.0069 (17)	0.0292 (16)	-0.0083 (17)
01	0.109 (2)	0.0778 (19)	0.0720 (17)	0.0029 (17)	0.0441 (16)	-0.0235 (16)
C7	0.065 (2)	0.077 (3)	0.076 (2)	-0.013 (2)	0.037 (2)	-0.018 (2)
C29	0.052 (2)	0.063 (2)	0.067 (2)	-0.0037 (18)	0.0330 (18)	-0.006 (2)
C11	0.084 (3)	0.066 (3)	0.057 (2)	0.021 (2)	0.034 (2)	-0.002 (2)
C9	0.075 (2)	0.052 (2)	0.052 (2)	-0.0078 (18)	0.0363 (18)	-0.0114 (17)
C18	0.064 (2)	0.066 (3)	0.061 (2)	-0.0023 (19)	0.0382 (19)	-0.0068 (19)
C10	0.071 (2)	0.055 (2)	0.056 (2)	-0.0092 (19)	0.0355 (19)	-0.0090 (18)
C25	0.066 (2)	0.070 (3)	0.072 (2)	-0.008 (2)	0.043 (2)	-0.001 (2)
C17	0.085 (3)	0.066 (3)	0.066 (2)	0.004 (2)	0.047 (2)	0.001 (2)
C22	0.067 (2)	0.054 (2)	0.052 (2)	0.0047 (18)	0.0293 (19)	-0.0077 (17)
C28	0.070 (2)	0.069 (3)	0.071 (2)	-0.002 (2)	0.039 (2)	0.002 (2)
C14	0.079 (3)	0.078 (3)	0.080 (3)	-0.020 (2)	0.047 (2)	-0.001 (2)
C27	0.051 (2)	0.076 (3)	0.073 (2)	0.003 (2)	0.0206 (19)	-0.009 (2)
C6	0.075 (2)	0.126 (4)	0.101 (3)	-0.013 (3)	0.063 (2)	-0.034 (3)
C5	0.053 (2)	0.068 (3)	0.059 (2)	0.0039 (18)	0.0314 (17)	-0.0082 (19)
C16	0.069 (2)	0.072 (3)	0.062 (2)	0.003 (2)	0.025 (2)	-0.006 (2)
C26	0.054 (2)	0.092 (3)	0.092 (3)	-0.007 (2)	0.042 (2)	-0.010 (2)
C15	0.064 (3)	0.090 (3)	0.095 (3)	-0.007 (2)	0.039 (2)	0.005 (3)
C12	0.087 (3)	0.101 (3)	0.082 (3)	0.027 (2)	0.042 (2)	-0.015 (2)
C23	0.076 (2)	0.088 (3)	0.069 (2)	-0.005 (2)	0.030 (2)	-0.032 (2)

Geometric parameters (Å, °)

Cl1—C16	1.752 (4)	С7—Н7В	0.9800
Cl2—C27	1.760 (4)	С7—Н7С	0.9800
N4—C19	1.291 (3)	C29—C28	1.389 (4)
N4—N5	1.401 (3)	С29—Н29А	0.9500
O2—C22	1.227 (3)	C11—C12	1.498 (5)
N2—C8	1.291 (3)	C9—C10	1.543 (4)
N2—N3	1.415 (3)	С9—Н9А	0.9900
C3—C4	1.382 (4)	С9—Н9В	0.9900
C3—C2	1.390 (4)	C18—C17	1.399 (4)
С3—НЗА	0.9500	C18—H18A	0.9500
C2—C1	1.406 (4)	C10—H10A	1.0000
C2—C19	1.465 (4)	C25—C26	1.390 (5)
N5—C22	1.362 (4)	C25—H25A	0.9500
N5—C21	1.484 (3)	C17—C16	1.374 (4)
N1—C1	1.336 (3)	C17—H17A	0.9500
N1—C5	1.355 (4)	C22—C23	1.502 (4)
C8—C4	1.480 (4)	C28—C27	1.367 (4)

C8—C9	1.511 (4)	C28—H28A	0.9500
N3—C11	1.365 (4)	C14—C15	1.400 (5)
N3—C10	1.460 (4)	C14—H14A	0.9500
C21—C24	1.502 (4)	C27—C26	1.359 (5)
C21—C20	1.530 (4)	C6—C5	1.509 (4)
C21—H21A	1.0000	С6—Н6А	0.9800
C1—C7	1.508 (4)	С6—Н6В	0.9800
C4—C5	1.399 (4)	С6—Н6С	0.9800
C19—C20	1.508 (4)	C16—C15	1.348 (5)
C20—H20A	0.9900	C26—H26A	0.9500
C20—H20B	0.9900	C15—H15A	0.9500
C13—C18	1.381 (4)	C12—H12A	0.9800
C13—C14	1.380 (4)	C12—H12B	0.9800
C13—C10	1.519 (4)	C12—H12C	0.9800
C24—C25	1.376 (4)	C23—H23A	0.9800
C24—C29	1.384 (4)	С23—Н23В	0.9800
O1—C11	1.231 (4)	С23—Н23С	0.9800
С7—Н7А	0.9800		
C19—N4—N5	106.8 (2)	С8—С9—Н9В	111.1
C8—N2—N3	107.0 (3)	С10—С9—Н9В	111.1
C4—C3—C2	121.8 (3)	Н9А—С9—Н9В	109.1
С4—С3—НЗА	119.1	C13—C18—C17	121.0 (3)
С2—С3—НЗА	119.1	C13—C18—H18A	119.5
C3—C2—C1	117.9 (2)	C17—C18—H18A	119.5
C3—C2—C19	116.4 (3)	N3—C10—C13	114.6 (3)
C1—C2—C19	125.6 (3)	N3—C10—C9	100.4 (2)
C22—N5—N4	120.4 (3)	C13—C10—C9	111.7 (3)
C22—N5—C21	124.5 (3)	N3—C10—H10A	109.9
N4—N5—C21	113.8 (2)	C13—C10—H10A	109.9
C1—N1—C5	119.9 (3)	C9—C10—H10A	109.9
N2—C8—C4	124.1 (3)	C24—C25—C26	121.8 (3)
N2—C8—C9	113.5 (3)	C24—C25—H25A	119.1
C4—C8—C9	122.4 (3)	C26—C25—H25A	119.1
C11—N3—N2	122.1 (3)	C16—C17—C18	119.6 (3)
C11—N3—C10	124.0 (3)	С16—С17—Н17А	120.2
N2—N3—C10	113.8 (2)	С18—С17—Н17А	120.2
N5—C21—C24	112.2 (2)	O2—C22—N5	117.7 (3)
N5-C21-C20	101.0 (2)	O2—C22—C23	123.1 (3)
C24—C21—C20	114.1 (2)	N5-C22-C23	119.1 (3)
N5-C21-H21A	109.7	C27—C28—C29	118.7 (3)
C24—C21—H21A	109.7	C27—C28—H28A	120.7
C20-C21-H21A	109.7	C29—C28—H28A	120.7
N1—C1—C2	121.2 (3)	C13—C14—C15	121.6 (3)
N1—C1—C7	114.6 (3)	C13—C14—H14A	119.2
C2—C1—C7	124.2 (3)	C15—C14—H14A	119.2
C3—C4—C5	116.5 (3)	C26—C27—C28	120.7 (3)
C3—C4—C8	116.6 (3)	C26—C27—Cl2	120.5 (3)
C5—C4—C8	126.9 (3)	C28—C27—Cl2	118.8 (3)
N4—C19—C2	123.7 (3)	С5—С6—Н6А	109.5

N4—C19—C20	114.7 (2)	С5—С6—Н6В	109.5
C2—C19—C20	121.6 (3)	Н6А—С6—Н6В	109.5
C19—C20—C21	103.0 (2)	С5—С6—Н6С	109.5
С19—С20—Н20А	111.2	Н6А—С6—Н6С	109.5
C21—C20—H20A	111.2	H6B—C6—H6C	109.5
С19—С20—Н20В	111.2	N1—C5—C4	122.7 (3)
C21—C20—H20B	111.2	N1—C5—C6	114.0 (3)
H20A—C20—H20B	109.1	C4—C5—C6	123.3 (3)
C18—C13—C14	117.5 (3)	C15—C16—C17	120.6 (3)
C18—C13—C10	121.9 (3)	C15—C16—Cl1	119.8 (3)
C14—C13—C10	120.3 (3)	C17—C16—Cl1	119.5 (3)
C25—C24—C29	116.6 (3)	C27—C26—C25	119.8 (3)
C25—C24—C21	122.3 (3)	С27—С26—Н26А	120.1
C29—C24—C21	121.1 (3)	С25—С26—Н26А	120.1
С1—С7—Н7А	109.5	C16—C15—C14	119.6 (3)
С1—С7—Н7В	109.5	С16—С15—Н15А	120.2
H7A—C7—H7B	109.5	C14—C15—H15A	120.2
С1—С7—Н7С	109.5	C11—C12—H12A	109.5
H7A—C7—H7C	109.5	C11—C12—H12B	109.5
H7B—C7—H7C	109.5	H12A—C12—H12B	109.5
C28—C29—C24	122.5 (3)	C11—C12—H12C	109.5
C28—C29—H29A	118.7	H12A— $C12$ — $H12C$	109.5
C24—C29—H29A	118.7	H12B-C12-H12C	109.5
01-C11-N3	118.8 (3)	C22—C23—H23A	109.5
01 - C11 - C12	124 8 (3)	C22—C23—H23B	109.5
$N_3 - C_{11} - C_{12}$	116 4 (3)	H23A—C23—H23B	109.5
C8 - C9 - C10	103.2(2)	C^{22} C^{23} $H^{23}C$	109.5
C8—C9—H9A	111 1	$H_{23A} - C_{23} - H_{23C}$	109.5
C10-C9-H9A	111.1	$H_{23B} = C_{23} = H_{23C}$	109.5
	0.5.(5)	N2 N2 C11 C12	0.4.(5)
$C_{4} = C_{3} = C_{2} = C_{1}$	-0.5(3)	$N_2 = N_3 = C_{11} = C_{12}$	-0.4(3)
$C_4 = C_3 = C_2 = C_{19}$	-1622(3)	$N_{2} = C_{2} = C_{1} = C_{12}$	1/9.1 (5) 8 0 (2)
C19 - N4 - N5 - C21	-102.3(3)	$N_2 = C_3 = C_1 O_2 = C_1 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2$	(3)
$V_{19} = N_{10} = V_{10} = V_{10}$	3.3(3)	$C_4 = C_8 = C_9 = C_{10}$	-1/1.8(3)
$N_{2} = N_{2} = C_{3} = C_{4}$	-1/9.9(3)	C14 - C13 - C18 - C17	-1.0(3)
$N_{3} = N_{2} = C_{3} = C_{9}$	-0.0(3)	C10 - C13 - C10 - C17	1/5.1(5)
$C_{0} = N_{2} = N_{3} = C_{10}$	1/0./ (3) 8.0.(2)	$N_{2} = N_{2} = C_{10} = C_{12}$	(4.2(4))
$C_{0} = N_{2} = N_{3} = C_{10}$	-8.9(3)	$N_2 = N_3 = C_{10} = C_{13}$	-100.2(3)
C22—IN5—C21—C24	-79.9(4)	CII—N3—CI0—C9	-105.9(3)
N4 - N5 - C21 - C24	115.0 (3)	$N_2 = N_3 = C_{10} = C_9$	15.7(5)
C_{22} N5 C_{21} C_{20}	158.2 (5)	C18 - C13 - C10 - N3	1/.2(4)
N4 - N5 - C21 - C20	-8.9(3)	C14 - C13 - C10 - N3	-108.8(3)
C_{2}	-0.0(3)	C18 - C13 - C10 - C9	-90.1(3)
$C_{2} = C_{1} = C_{1}$	-1/9.9(3)	$C_{14} = C_{13} = C_{10} = C_{9}$	12.5 (2)
$C_3 = C_2 = C_1 = N_1$	1.0 (4)	$C_{8} = C_{9} = C_{10} = C_{13}$	-12.5(3)
$C_{19} - C_{2} - C_{1} - C_{1}$	-1/8.8(3)	$C_{0} = C_{10} = C_{10} = C_{13}$	109.4 (3)
$C_{10} = C_{2} = C_{1} = C_{7}$	-1/9.9(3)	$C_{29} - C_{24} - C_{25} - C_{20}$	0.7(3)
$C_{1} = C_{2} = C_{4} = C_{5}$	0.4(3)	$C_{12} = C_{12} = C$	1/9./(3)
12 - 13 - 14 - 15	-0.2(5)	U13 - U18 - U1/ - U16	-0.9 (5)
C2 - C3 - C4 - C8	1/9.4 (3)	N4—N5—C22—O2	1/0.1 (3)

N2-C8-C4-C3	179.2 (3)	C21—N5—C22—O2	3.8 (5)
C9—C8—C4—C3	0.0 (4)	N4—N5—C22—C23	-11.4 (4)
N2—C8—C4—C5	-1.2 (5)	C21—N5—C22—C23	-177.6 (3)
C9—C8—C4—C5	179.6 (3)	C24—C29—C28—C27	-0.1 (5)
N5-N4-C19-C2	179.1 (3)	C18—C13—C14—C15	1.9 (5)
N5-N4-C19-C20	1.1 (3)	C10-C13-C14-C15	-172.3 (3)
C3—C2—C19—N4	-178.9 (3)	C29—C28—C27—C26	0.1 (5)
C1-C2-C19-N4	0.9 (5)	C29—C28—C27—Cl2	179.5 (3)
C3—C2—C19—C20	-1.1 (4)	C1—N1—C5—C4	-0.2 (5)
C1—C2—C19—C20	178.7 (3)	C1—N1—C5—C6	-179.0 (3)
N4-C19-C20-C21	-6.5 (3)	C3—C4—C5—N1	0.6 (5)
C2-C19-C20-C21	175.5 (3)	C8—C4—C5—N1	-179.0 (3)
N5-C21-C20-C19	8.4 (3)	C3—C4—C5—C6	179.3 (3)
C24—C21—C20—C19	-112.2 (3)	C8—C4—C5—C6	-0.3 (5)
N5-C21-C24-C25	116.5 (3)	C18—C17—C16—C15	1.9 (5)
C20—C21—C24—C25	-129.5 (3)	C18-C17-C16-Cl1	-176.6 (3)
N5-C21-C24-C29	-64.7 (4)	C28—C27—C26—C25	0.3 (6)
C20-C21-C24-C29	49.4 (4)	Cl2—C27—C26—C25	-179.1 (3)
C25—C24—C29—C28	-0.3 (5)	C24—C25—C26—C27	-0.8 (5)
C21—C24—C29—C28	-179.3 (3)	C17-C16-C15-C14	-1.0 (6)
N2—N3—C11—O1	179.2 (3)	Cl1—C16—C15—C14	177.5 (3)
C10-N3-C11-O1	-1.3 (5)	C13-C14-C15-C16	-1.0 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C9—H9A···O2 ⁱ	0.99	2.59	3.358 (3)	135
C17—H17A···O2 ⁱⁱ	0.95	2.50	3.359 (4)	151

Symmetry codes: (i) -x+1, y+1/2, -z; (ii) x, y, z+1.

Fig. 2